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ABSTRACT

The kinetic energy of the horizontal, hydrostatic flow is divided into the kinetic energies of the vertically inte-
grated flow and the deviation from this flow, the so-called shear flow. The energy transformation between the two
types of flow is found in the general case of the primitive equations and also for the most simple quasi-non-divergent
model. The two transformations are discussed, and the energy transformation in the quasi-non-divergent model in
the two-parameter ease is discussed as a funection of wave number using linear theory. The energy conversion has
been computed on a daily basis for the month of January 1959, and compared with earlier results of computations

of transformations between available potential energy and shear flow kinetic energy.
conversion changes the kinetic energy of the shear flow and not that of the mean flow.

mated for the shear flow as well as the mean flow.

It is shown that the latter
The residence time is esti-

The energy transformation between the vertical shear flow and mean flow due to the non-divergent and diver-
gent flow has been computed in the wave-number regime for the first 10 zonal wave numbers for each day in January

1959.

It is found that the energy conversion between shear flow and mean flow is about 30 percent of the conver-

sion between the available potential energy and the shear flow kinetic energy.
A further result is that the energy conversion between the shear flow and the mean flow due to the divergent
part of the flow is estimated to be negative and ahout 10 percent of the conversion due to the non-divergent part of

the flow.

The energy conversion as a function of wave number shows a maximum for the most unstable baroclinic waves.

1. INTRODUCTION

During recent years the energetics of the atmosphere
have received much attention in studies of the general
creulation. The energy conversions which take place
between the different forms of energy have been computed
in theoretical studies (Phillips [5], Charney [2]), in nuineri-
cal experiments (Phillips [6]) and in observational studies
(Wiin-Nielsen [10], Saltzman and Fleischer [9]). Most of
the work has been done in the evaluation of the conver-
sion between potential and kinetic energy. This conver-
sion has been computed from the latitudinal average of the
flow, for the deviations {rom the averaged flow, and as a
function of the zonal wave number.

In the present study we shall again consider the energy
conversion between potential and kinetic energy, but we
shall divide the kinetic energy of the flow into two parts:
the kinetic energy of the vertically integrated flow and the
kinetic energy of the deviation from this flow, which in
the present study will be called the shear flow.

The total energy conversion between potential and
kinetic energy computed from observations is found to
be positive at any time. One might think that the kinetic
energy created by conversion from potential energy could
be used partly to increase the kinetic energy of the
vertically averaged flow and partly to increase the shear-
flow kinetic energy. The energy conversion between

potential and kinetic energy depends on the correlation
between the vertical velocity and the temperature.
Excluding external gravity waves by a simplified lower
boundary condition, it is well-known that the vertically
averaged flow becomes non-divergent. It is therefore to
be expected that the kinetic energy created by conversion
from potential energy will increase the kinetic energy of
the shear flow.

The investigation will proceed along the following lines:
We shall first show that the kinetic energy of the hori-
zontal, hydrostatic flow can be expressed as the sum of
the kinetic energy of the vertically averaged flow and the
shear flow. Next, we shall show that energy converted
from potential energy goes into the shear flow. It follows
then that there must be a transformation of energy
between the shear flow and the vertically averaged flow.
When we have determined this energy transformation
function, which we shall speak about as transformation
between shear flow and mean flow, we are in a position to
determine the mechanism which controls whether the
kinetic energy is stored in the shear flow or in the vertical
mean flow,

The energy conversion between the shear flow and the
mean flow is first determined in the general case of the non-
filtered equations. Next, we find the same energy conver-
sion for the filtered (quasi-non-divergent) equation, and
we can make a comparison between the two conversions.
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In order to get an insight into how the energy conversion
may depend upon the scale of the motion we finally use,
as an example, simple sinusoidal two-dimensional waves
to compute the energy conversion as a function of the
wavelength.

2. KINETIC ENERGY OF MEAN FLOW AND SHEAR
FLOW

The vertically integrated flow will be defined by the
following operator
=" 0
—po 0 P
where p is pressure and p, the surface pressure.

Using (2.1) we may write the components of the hori-
zontal wind in the form

2.1)

u=u-t+u’,

where naturally

v=7+v’ (2.2)

2.3)

The total kinetic energy will be defined by the integral

K=fwf L o) dSdz—
0 Js2

where p is the density, S the region of the whole sphere,
and where we have made use of the hydrostatic equation
to obtain the last integral in (2.4).

Introducing the relations (2.2) in (2.4) and making use
of the relations (2.3) we obtain

1 o1, 2 ,
5]; L§ (u*4-0v1)dSdp (2.4)

= [ [BE g @ Jasap @)

or
K=K+K’ (2.6)
where
1% 1 A
K=1 f j RiSdp,  k—t (20
gJo K 2
T Pl 1 i .
K=" kdS, k=5 (@*+7° S (2.7)
S P
1 (» 1
K=t j KdSdp, k=it
gJo S 2 J

K will be called the total kinetic energy, K the kinetic
energy of the vertical mean flow, and X’ the kinetic energy
of the shear flow. It will be noticed that we have not
included the vertical motion in the evaluations of the
energies.

The use of the hydrostatic equation filters out sound
waves, and we shall, for simplicity, in the following also
exclude external gravity waves by using the boundary
conditions

d

wz_&%}:()’pzo,p::pozloo cb. (2.8)
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3. ENERGY CHANGES IN TOTAL FLOW, MEAN FLOW,
AND SHEAR FLOW

The equations of motion and the continuity equation
will be used in the following form:

ou bu

bu

6, )

or or | or ov

o 2,9 _9¢_ -
ot ubI_H 07/+ ap by JutFy (3.1)
ou , or

+OJ+01) J

In (3.1) ¢=gz is the geopotential, f the Coriolis param-
eter, g the acceleration of gravity, F, and F, the two
components ol the frictional force per unit mass.

Multiplying the first equation of motion by u, the
second by #, adding the two resulting equations, and then
integrating over the complete atmosphere, it has been
shown earlier (see for example Wiin-Nielsen [10]) that

dK

P 022 asap+ [ v-Fasa,

Our next object 1s to derive an equation for the rate
of change of the kinetic energy of the mean flow, dK/dt.
In order to do this it is necessary first to obtain the
equations of motion of the vertically averaged flow.
These equations are derived by introducing (2.2) in the

(3.2)

system (3.1) and applying the operator (2.1). We arrive
in this way at the following set of equations:
Ju , W - U ,ou’ | ou | ow )
ot T a+ oL ar +°’a_p]
aa; = Al
- g - DL 91 ai & 3.3

IR ks & e aﬁ‘” ] (33)

bu bz

o

The system of equations (3.3) governs the development
of the vertically integrated flow. 'The last terms in the
brackets on the left sides measure the contributions from
the shear flow to the local accelerations in the mean flow.
The vertically integrated continuity equation says that
the vertical mean flow is mnon-divergent, i.e., V.Y=0.
The latter property is due to our simplified lower boundary
condition w=0 for p=p,.

We obtain now the rate of change of the kinetic energy
of the mean flow bv multiplying the first equation in
(3.3) by u, the second by 7, adding the two resulting
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equations and integrating over the complete atmosphere,
making use of the third equation in the system (3.3).
When this procedure is carried out, we arrive at the
following equation:

B_ ([ {0 o0 o
d ¢ Sl:u {u bx+v by+w Dp}

— , ov’ ' Po
) {u a-{—@ bp}:l dS+= f V.FIS (3.4)

We may transform the integrand in the first integral
of (3.4) first in the following way:

ou’ bu Ou u’
Il I .
{u 57 +v }
U bv _Oic_z bz r’
{“ ort?

The last two expressions may further be transformed
using the identities

/
5
, ov

(3.5)

by

(3.6)

ow'w ou'v’ ofl ., , Pt (o
o T o5 —or [2 (w2 v ):|+u vV =" (3.7)
ou’v’ bz v’

e LU RO R AR CRy

where ¢ 1s the relative vorticity of the shear flow.
Using the relations (3.5)—(3.8) we may write (3.4) in
the form

dg _ f Vvt +-V- TV IV -+ (V xk)- TV S
g
P GRS
+gfsvms* (3.9)
or
dK___ p __—_/-_/ N/ ’ 77,
W_—EOL[V-(V-V W+ (Vxk)- TV 1S

+% f VFis (3.10)

If we subtract (3.10) from (3.2) we get:

%2% f VTNV +(V xk)- TV 1S

w0 e

While (3.2) gives the change of the total kinetic energy,
(3.10) and (3.11) determine the rate of change of the
kinetic energies of the mean flow and the shear flow. On
the basis of these {formulas we may state that the last
integral in (3.10) measures the frictional dissipation of the
kinetic energy of the mean flow. This integral depends
only on the mean wind and the mean frictional force.
The last integral of (3.11) gives the frictional dissipation
of the shear flow. This integral contains only the shear

dep—i— f fV’ F'dSdp (3.11)
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wind and the deviation of the frictional force from its
mean value.

With respect to the direct conversion of potential to
kinetic energy, measured by the first integral in (3.2), we
notice that this integral only appears in (3.11). This
means that the kinetic energy, created by conversion from
potential energy, goes directly into the reservoir of the
kinetic energy of the shear flow.

Finally, the first integral appearing in (3.10), and with
the opposite sign in (3.11), measures the energy conversion
between the shear flow and the mean flow. Since we are
going to investigate this integral in some detail in the
following sections, we shall denote it

(K K)=-F° S[V-(v-v')v'+<\7><k>-?7']ds (3.12)

If the integral is positive, we have a conversion from
the kinetic energy of the shear flow to the kinetic energy
of the mean flow.

In the general form (3.12) {K’-K} depends on the value
of two integrals. The integrand in each integral is a
scalar product of two vectors. In the first integrand we
find the scalar product of the mean wind, V, and the
vertical average of the shear wind weighted with the
divergence. The second integrand is the scalar product
of the mean wind turned 90 degrees in a clockwise
direction and the vertical average of the shear wind
weighted with a relative vorticity of the shear flow.

The last term in (3.10), which is the opposite of the
frictional dissipation of the mean flow, is most likely
negative since the mean frictional force tends to be oppo-
site to the mean wind. In the long term average it follows
therefore that {K’-K} measured by (3.12) must be positive
since the kinetic energy of the mean flow probably does
not change significantly in the mean over a long time.

A {further discussion of the relative importance and
interpretation of the two terms in (3.12) will be given in
the later sections, but we notice that a numerical evalua-
tion of both of the terms is possible from atmospheric
wind data supplemented by a diagnostic computation of
the horizontal divergence.

4. ENERGY TRANSFORMATIONS BETWEEN SHEAR
FLOW AND MEAN FLOW IN QUASI-NON-DIVERGENT
MODELS

The derivation in the preceding section was based on
the non-filtered equations of motion. It is of interest to
find the energy conversion between shear flow and nrean
flow also in the filtered equation or in other words, in a
quasi-non-divergent model. It is to be expected that the
first integral in (3.12) will be missing in this model, since
it appears due to the divergence of the horizontal, isobaric
wind. This divergence is neglected in the most simple
quasi-non-divergent model. We shall in the derivation
use the mean wind and the shear wind as defined by (2.2)
and (2.3) and also the kenetic energies as given by (2.7)
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except that the horizontal wind components, w and ¢,
now are considered to be non-divergent.

The prognostic equation for the model is now the
vorticity equation in the form:

o¢ s Ow

5t T Vvl th =/ az0+I<-(v><F) (4.1)
From (2.2) it follows that we may write the wind and

the vorticity in the lorms

V=V+V’',  =t+¢ (4.2)

Substituting (4.2) and (4.1) and then applying the
operator (2.1) and the boundary condition (2.8) we get:

§f+V-V<E+f> +V' V¢ =k-(VXF) (4.3)

If we subtract (4.3) from (4.1) alter substitution of
(4.2), we obtain the prognostic equation for the shear flow:

R A AR R VA
—V’-Vf’zfo%;—"frk-(vxF’) (4.4)

The kinetic energy of the mean flow may in this case
be written

K:% L %VE.VWS (4.5)

since we only consider the kinetic energy of the non-
divergent wind. From (4.5) it follows that:

%f 2 f A (/S— 2o f 1%5as @
In a similar way we obtain
f f vy oy dSdy (4.7)
from which it follows that
dK' __! f f v 2 asay (4.8)

It is seen {rom (4.6) and (4.8) that we can obtain
expressions for dK/dt and dK'/dt by multiplying (4.3) by
¥, (4.4) by ¢/, and then performing the integrations.
Applying this procedure first to (4.3) we get:

VASPVVE AN+ VTP (7P 49

The second term will integrate to zero, because

fs ¥ Vv (F+f)dS= f VEGELHVIAS=0  (4.10)
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while the third term in (4.9) will be integrated to
f ¥ V’w’dS:-f ¢V vdS (4.11)
Y S

and therefore:

f V- vedS + 2 f ( Fﬁ%ﬁ Fy>dS 419

V <k, we have:

E
dt

but since V¥=

f][? Do N/’ Po
. —{7f(v><|u Va1 fvms (4.13)

Equation (4.13) should be compared with the first
integral In (3.10), and it is seen, as expected, that the
first part ol the integral is missing in the quasi-geostrophic
formulation.

Multiplying (4.4) by ¢ we obtain

A AR () B AR e

I aw ’ /
=41, afp%‘l// k-(vXF) (4.14)

Taking these terms one by one we obtain:

f " f Vv dSdp—p, f TV vgdS  (4.15)
JOJS J 8
I‘%J‘ ¢’V'~V(?%jf)r/S(r’]):0 (4.16)
J 0 S
Py
f fWV'-V{"(/S(/[):O (4.17)
JO JS
Py r—
f f\!/Vﬂvg"(/S:/p:O (4.18)
JO JS
Consequently:
1K’ , 77
o ”‘f¢ Y w(/S+f f 3 aSdp
+ " f VI .FdSdp  (419)
9Jo Js
or:
N
T ‘LVXk.g \Y (18’-}—( . w op dSdp

41 f " f VI FdSdp  (420)
gJo 5

We find again comparing (4.20) to (3.11) that the part
of the integrand depending on the horizontal divergenece
18 missing.

The main difference between an integration of the
primitive equations and the quasi-non-divergent equation
with respect to the energy conversion from the shear flow
to the mean flow is therefore the sign and order of magni-
tude of the integral
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Before we try to look into this question we shall special-
ize the general expressions obtained for the quasi-non-
divergent model to the two-parameter case and investigate
the ratio between the energy conversion from shear flow
to mean flow and the energy conversion between the
potential energy and the shear flow. This ratio is a
measure of the amount of kinetic energy stored in the
shear flow.

5. THE TWO-PARAMETER, QUASI-NON-DIVERGENT
CASE

Since the derivations given in the preceding sections
separate between the shear flow and the vertical mean
flow, we shall in the following use a two-parametric
representation of the atmosphere, which makes the same
separation. Such a formulation has been given by
Eliassen [3] and wused by Phillips {7]. Using Phillips’
formulation we may write the assumptions in the form

(5.1)

where A(p) and B(p) are funetions satisfying the condi-
tions

V=V+V'=V+AP)Vr, w=—-pB(p)V-Vr

A=0, A2=1, B(p)=%fpr1(p)dp (5.2)
0J0

We may define a vertical velocity «* by the relation

9
i=—"V'\/T

5.3
Po (5.3)

With this notation we can write the prognostic equa-
tions in the form:

%+VV(}+J[) +Vpvir=0

a“ (5.4)

=V

+V Vir+Vr V(f“{‘f)_zj):o *

0% ol

+V ‘PT )\2 w

A

In (5.4) ¢ is the stream function for the thermal flow
and A\ is defined as:

N—— Jo (5.5)
[B*Tp~'0 In 6/op|2k p;

The energy conversion from potential energy to kinetic
energy of the shear flow is according to (4.20)

PE = ["{ &% asa ;
(P-K’) _J; L “3p i (5.6)
which in the two-parameter case reduces to
(PK') =—?-gﬁ f wHPrdS 5.7
S

644796—62—-2
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because
(5.8)

f B dp——

The energy conversion from kinetic energy of the shear
flow to the mean flow in this model is

(KK} =P f TV VgaS=—2 | ¢2(V- VRS

(5.9)

{P-K’} has earlier been computed by the author from
atmospheric data as well as for simple sinusoidal flow
pattern. Itis obviousfrom (5.9) that {K’-K} is relatively
easy to compute from atmospheric data. Equation (5.9)
shows, in [act, in the two-parameter case that we will have
an energy conversion from the shear flow to the mean flow,
if ¢r and (—VrVy) are positively correlated. Since
(—V1-V{) is negative in regions of warm air advection and
positive in regions of cold air advection, it is seen, that in
order to transfer the kinetic energy from the shear flow to
the mean flow we must, on the average, have the cold air
advection in regions of c¢yclonic, relative, thermal vorticity
and warm air advection in regions of anticyclonic, relative
thermal vorticity. This arrangement of the thermal pat-
tern relative to the mean flow is possible, if the thermal
waves on the average are lagging behind the waves in the
mean flow. The mean flow loses kinetic energy continu-
ously due to the frictional loss (last integral in (3.10)).
In order to maintain the mean flow it is therefore necessary
that {K’.K} is positive and therefore that the thermal
waves lag behind the waves in the mean flow. The last
result has been obtained by Fjgrtoft [4] from somewhat
different considerations. _

In order to estimate {P.-K’} and {K'-K} for simple
flow patterns we need an evaluation of the vertical veloc-
ity. The equation for the vertical velocity can be obtained
{from the second and third equations of (5.4) giving:

-—2)\20)*:]%0 M[VE(V-VYr) —V-V e —V V()]
(5.10)

If we select flow pattern described by

¢:—Uy—{—A sin (kx) cos (uy), k= : u= QI/V
(5.11)

Yr=—Ury+ Ay sin (kx+ar) cos (uy)
and consider a rectangular region of length L and width
2W (y=0 in the middle of the channel), it turns out that

the solution to (5.10) can be written:

=R cos kx cos uy+S sin kx cos py-+T sin 2py  (5.12)

where



316
R0, 2k 4w rA—BkAy c0s ar ;)
T Pt 2N A
— Do BkArsinar,,
§ Jo k2N A > (5.13)
7P 2k AAr sinay |,
Jo 422N J

Using the expression (5.12) we can substitute into (5.7)
and obtain:

{P-K'}zLW%QQWc- 1%2 lv AAU L sin ag
Hegs 2t

(5.14)

From the flow pattern (5.11) we can substitute into
(5.9), which turns out to be:

(& R)=1w I kR A, Upsina,  (5.15)

The last term in the bracket in (5.14) is a measure of the
energy conversion between the mean potential and mean
kinetic energy, which can be seen by separating the fields
into a zonal mean and deviations {rom the zonal mean.
Denoting the zonal mean by a subscript Z and the eddies
by a subscript £ we have:

(PR} ={P, Ky} + (PeKy) (5.16)

and it is easily seen that

(PpKy) ——1wPeoney - lv AAL Ty sinap (5.17)
TRPIES

Restricting ourselves to the eddies we have:

S
227
Mg

(PuKp) =LW%’ 2% AAU psinar  (5.18)

Comparing (5.15) and (5.18) it is seen that both of these
quantities {P,-K,} and {K’.K}, are positive if ar>0, i.e.,
if the temperature field 1s lagging behind the pressure
field. It is further seen that the two conversions depend
on the amplitudes and the thermal zonal wind in the same
way, but that they depend differently on the scale of the
motion.

The dependence on the scale of the motion for {P, K}
was computed earlier by the author (Wiin-Nielsen [10]).
It suffices therefore here to consider the ratio between

(K"K} and {P,K,}. We get

(KB} /1Py Ky} i H e

5+ (5.19)

MONTHLY WEATHER REVIEW

AucusT 1962

6 T T T T T T T T T T T T T

fan)
X
&
N 4
o~
I
X
hnd -
2000 Km.
____________ 4000Km.
10000Km.
1 1 1 1 1 1 1 (] 1 1 1 1 1 ]
0 2 4 6 8 10 12 i4

L X10 Km.

Fiavre 1.—The ratio of energy conversion between shear flow and
mean flow to the conversion between available potential energy
and shear flow kinetic energy as a function of zonal wavelength
for different values of the meridional wavelength,

The ratio (5.19) is illustrated in figure 1 for different
values of the meridional scale as a function of the zonal
scale with NM=2.5%X1072 m.”? (2W) is actually a half
wavelength in the meridional direction.

The essential results illustrated in figure 1 are that for
the small-scale motion a larger amount of kinetic energy is
transformed into kinetic energy of the mean flow than is
converted from the available potential energy. On the
small scale there is therefore a depletion of the kinetic
energy in the shear flow. On the other hand, the figure
shows also that an accumulation of kinetic energy takes
place on the large scale in the shear flow, since the amount
transformed to kinetic energy of the mean flow is smaller
than the amount converted from potential energy as long
as the meridional scale is large. On the medium scale
(1.=13,000-5,000 km.) there is no storage of kinetic energy
in the shear flow, again as long as the meridional scale is
large enough. Since {P-K,} has a maximum around
3,000-5,000 k., where the baroclinic instability is largest
(Wiin-Nielsen [10]), our results show that no storage takes
place in the greatest-amplitude waves in the shear flow.

As 1s seen from the figure and from (5.19) the ratio
becomes very large, if the scale is small (u and £ large).
Suppose now that we have some positive or negative
conversion {from potential to kinetic energy on the small
scale. According to (5.19) we should therefore expect a
rather violent reaction in the conversion between shear
flow and mean flow kinetic energy. Since the flow at a
certain pressure level (usually 600 or 500 mb.) is used to
represent the mean flow, the latter {fact may explain why
we often find appreciable small-scale noise in the predic-
tions with baroclinic models. This noise is not solely
due to the numerical procedures, but 1s aggravated by the
physical properties of the quasi-non-divergent model.
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6. CALCULATION OF ENERGY CONVERSION FROM
OBSERVED DATA

The energy conversion between shear flow and mean
flow kinetic energies can be evaluated from observed data
as remarked at the end of section 3. The computations
were made with data from January 1959, using 850 and
500-mb. data. These data were selected because they
entered into an earlier computation of energy conversion
between available potential and kinetic energy (Wiin-
Nielsen [10]). Both of the integrals in (3.12) were
approximated and evaluated once a day using a procedure
as described below.

With data available only at two levels for January 1959
we are forced to use a two-parameter representation of
the type given in section 5. As shown in that section
we may write the basic expression (3.14) in the form

KR =D f V-V (V-Vo) + (T Xk VS (6.1)
S

g

We introduce the notations:

(R yg=—L2 [ 0V Vds

(6.2)
(KR == 0V is
JJs J
Using the formulation (5.1) it is easily seen that
$r={(A5—Ass)7'¢a (6.3)

where ¢, is the thermal vorticity in the layer between
850 and 500 mb. and As and Ag; are representative values
of A(p) at the levels 50 and 85 ¢b. A; and Ag were
taken from the table given by Eliassen [3].

We find further that

NX'() Vr=(As5—As5) ") §a, ¥s0) (6.4)

and therefore that
vy Do )
{K 'K}ND”“!](A5O_A85)2L g‘dJ (.Sl/ao,v ‘pd) (ZS (65)

The integral (6.5) was evaluated by computing the
thermal, relative vorticity and the Jacobian at the grid
points in the JNWP octagonal grid. These values were
next interpolated to a latitude-longitude grid using a grid
size of 2.5°. The integral may then conveniently be
evaluated using the form:

2 T
K Riyp=— 2% | T L(g) cos ¢4 6.6
{ }ND g(A50“‘A85)~ ¢ (¢) cos ¢(¢ ( )
where L(¢) is defined by the equation
2w
L(¢) =J; fdJ(%l/so; Ya)d\ (6-7)

¢ is the radius of the earth, ¢ is latitude, and ) longitude
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in the preceding formulas. The southernmost latitude,
¢, was taken to be 20° N. Both of the integrals in
(6.6) and (6.7) were evaluated using finite sums and an
increment of 2.5°.

The second integral in (6.2) may be evaluated in a
similar way. A special problem arises due to the presence
of the divergence. This quantity was evaluated using
the available vertical velocities which are supposed to
apply at the 600-mb. level according to the model assump-
tions in the JNWP operational model. We get, using

(5.1), that
. Weo . _Wso
V'VT_"' p(]Bﬁ()_ 42 (6'8)
again using Eliassen’s [3] estimates of B(p).
- 1 A
S R S VAR T
{ } P .(]B60(A50_A85) S 60 V50 V A50—A85V S
(6.9)
or
2 T
KRy O f 5y 1
LK }D gBGO(A5()_A85) ¢0 (¢) COS¢(I¢ (6 O)
where
2T
16— [ “ouP o 0D (6.11)
and
P b=V VWm0 (vg)r  (612)
5 ¥d 5 d A5(]_’A85 d .

The integrals (6.10) and (6.11) were again evaluated
by finite sums using a 2.5° grid size.

The mean values for the month of January 1959 from
31 evaluations for {K’-K}yp turned out to be 4.3X10~*
kj. m.7? see.”t while {K'"K}p was —0.47X10* kj. m.7?
sec.”l.  We find therefore that {K’-K}p is slightly more
than 10 percent of the values for{K’-K}yp. The standard
deviations of the two mean values are 1.5X107*kj. m.~2
sec.”!and 1.1 X107* kj. m."2% see.™ L.

It should further be mentioned that the total energy
conversion

(K" K}wo+{K"EK}»p

turned out to be positive for each day, which means that
the transformation constantly goes from the shear flow
kinetic energy to the mean flow kinetic energy.

Some remarks should be made at this point regarding
the approximations which are used in evaluating the two
energy transformation integrals. The first integral is
evaluated using non-divergent winds at both levels. The
balance equation was solved for the stream function at the
500 and 850-mb. levels and ¢, was obtained by subtraction.
This integral is therefore evaluated as it would be in a
quasi-non-divergent model. The second integral is also
evaluated using vertical velocities and non-divergent
winds from an adiabatic, {rictionless, and quasi-non-
divergent model. Such an evaluation is naturally an
approximation because the integral is connected with the
advection with divergent wind components. However,
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Figure 2.—The correlation between thermal relative vorticity and
temperature advection expressed as an energy conversion as a
function of latitude.

diagnostic computations of the divergent wind components
have shown that they are small compared to the non-
divergent components, and the evaluation is therefore a
good first approximation.

The two averaged figures for the conversion from shear
flow to mean flow kinetic energy may be compared with
the conversion from available potential to shear flow
kinetic energy. The latter conversion was computed
earlier by the author (Wiin-Nielsen [10]), using data from
the same month, to be 14.0X107* kj. m.7* sec.”". The
total conversion fromn shear flow to mean flow is 3.8X10™*
kj. m."% sec.”!, which means according to these estimates
that about 27 percent of the available potential energy,
which is converted, eventually gets into the mean flow
kinetic energy, where it is dissipated through [riction.
The dissipation is measured by the last integral in (3.12).
However if a quasi-non-divergent model is used about
30 percent of the converted available potential energy
goes into the mean flow kinetic energy. These numbers
suggest that a difference of about 10 percent will exist
between forecasts made with the most simple quasi-non-
divergent model and a more advanced type of prediction
model based upon the vorticity equation or on the equations
of motion themselves.

The ratio between the two energy conversions, {K’-K}
and {P-K'}, is measured to be somewhat smaller than the
estimate obtained from (5.19) which was evaluated using
a linearized approach. The difference between the two
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Ficure 3.—Contributions to the total conversion of shear flow
kinetic energy to mean flow kinetic energy from the divergent
part of the flow from different latitude bands.

results could indicate that there is a systematic under-
estimate of {K'-K}. Tf this is the case, it is probably
due to the fact that only data from the lower part of the
troposphere have been used in the observational part of
the study. From a similar study using a greater vertical
resolution one would be able to tell whether or not the
suggested explanation is correct.

Figure 2 illustrates the contribution from the different
latitude bands to the integral {K’-K}yp,. The ordinate
is given in the units of an energyv conversion, but due to
the fact that the latitude rings cannot be considered as
energetically closed with any degree of approximation one
should think of the curve in figure 2 as illustrating the
correlation between the thermal, relative vorticity and
the temperature advection. It is seen that the result
of the observational study agrees with the remarks
given in section 5 in the sense that cold (warm) air advec-
tion is positively correlated with regions of cyclonic
(anticyclonie), thermal vorticity, or in other words that
the temperature field on the average lags behind the
height field. An exception to this is found in the low-
latitude part of the region south of 30° N. where a negative
correlation exists. It is further seen that the greatest
contribution is found in the middle latitudes with the
maximum appearing at 42.5° N.

Figure 3 contains the curve illustrating the contribu-
tions from the latitude bands to the integral {K’-K},.
We find a positive maximum at 52.5° N. and minima at
85° N., 42.5° N.,, and 35° N. A comparison between
figure 2 and figure 3 shows that {K’-K}, at all places is
small compared to {K’-K}yp. One may therefore state
that the major part of the energy conversion between
shear flow and mean flow is coutained in the quasi-non-
divergent model.
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1. ENERGY CONVERSIONS IN THE WAVE NUMBER
REGIME

As in earlier studies of energy conversions computed
from observed atmospheric data, it has been found of
interest to compute the energy conversion between the
vertical shear flow and mean flow in the wave number
regime (Wiin-Nielsen [10], Saltzman arid Fleischer [9]).
The technique which has been used in this study is slightly
different from the one used in the earlier study by the
guthor. The main steps in the computations will be
described below for the case of the conversion {K’"-K}yp
in the two-parameter case.

{K"RK}yp is in this case given by the following formula
(see (6.6))

Po®

R A ‘
_!}(‘45(,—A85)2f¢0L<¢> cos ¢dgp  (7.1)

where the notations have been explained in section 6.
Assuming next that the thermal relative vorticity and
the temperature advections are written in the form

(K"K}

rd=a0<¢)+§;‘l {an(@) sin (0N -Lb,(®) cos (N} (7.2)

and
N
J(so, ¢d>:AO(¢)+n§ {4,(@) sin (n\)-+B,(¢) cos (n\)}
(7.3)
where
a0@—= [ s
an(¢)=2—17rf027r Cosin MN)dN (7.4)

1 2%
b. () ='2—7FL £2€0s (RA)dN )

snd corresponding expressions apply for Ay(¢), A,.(¢),
and B,(¢), we can write L{¢) in the following form:

L@)=Lo@)+23 La(@) (7.5)
where
Lo(¢) =2may(¢) Ao(¢) (7.6)
and

We may then finally write {K’-K}yp in the following
form

— — N —
{K"K}NDZ{K,‘K};\%‘FZ {K’K}S\T;I))

n=1

(7.8)
where

r gy P 3 .
{K K}NDM.(](ASO_AS.‘S)ZJ;OL”((#) cos pdp  (7.9)

The values of the thermal, relative vorticity and the
temperature advection were as before computed in all
interior points of the JNWP octagonal grid. Values
were then obtained in a latitude-longitude grid with a
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grid size of 2.5° by interpolation. The Fourier coeffi-
cients ao(d’)y an(¢‘)) bn(d’): A0(¢); An (¢)) and Bn(d)) were t'hen
computed for each latitude circle from 20° N. to 87.5° N.
(a total of 28 values of each coefficient) using finite sums
in the evaluation of the integrals in (7.4) and the corre-
sponding formulas for Ay(¢), A.(¢), and B,(¢). The
final values of {K'-K}{® were then computed from (7.9)
replacing the integral by a finite sum.

In the earlier evaluation of the conversion between
available potential energy and kinetic energy (Wiin-
Nielsen [10]) it was found that the waves with wave num-
bers larger than 10 gave very small contributions to the
total spectrum. It was therelore decided to set N=10.*

A completely analagous procedure was used to evaluate
the integral {K’-K}, in (6.10). The Fourier analysis
was here performed on the quantities ws and P (5, ¥4,
and N was again equal to 10.

The calculations were carried out for each day of Jan-
uary 1959. The results consist of the 11 values of
{K" K} 35 for0 <n<10and corresponding values of {K"- K} 5

10

The sums > (K"K} and

n=0

for the same values of n.
10 —
Z_:,) {K'-K};? can be compared with the total values of
=

{K''K}yp and {K’'K}, computed in section 6. The
comparison gives how large a fraction of the total energy
conversion we can explain by the first 10 wave numbers.
We find in both cases that the contribution from wave
numbers with »>>10 is not negligible (compare the
footnote).

Figure 4 shows the spectrum of {K’-K}y» computed as
the average over the spectra for the individual days of
January 1959. The unit is 108 kj. sec.™, and the figure is
comparable with the corresponding figure for the conver-
sion from available potential energy to kinetic energy in
Wiin-Nielsen [10]. The figure shows a maximum con-
version of kinetic energy from the shear flow to the mean
flow for n=7, which is almost the same scale on which we
find the maximum conversion between potential and
kinetic energy of the shear flow. There is an indication
of a second maximum ou the planetary scale (n=1),
but this maximum is not as pronounced as the corre-
sponding maximum in {P-K’}. We arrive therefore at
the tentative conclusion that the baroclinic waves with an
amplification rate close to the maximum rate are the most
important in the maintenance of the kinetic energy of the
vertical mean flow against frictional dissipation.

Table 1 gives the mean values and standard deviations
(S) of the energy conversions {K’-K}yp corresponding to
figure 4. The rather large values of the standard de-
viations presented in table 1 show that there is a consider-
able scatter around the mean values in figure 4 and table 1.

In view of the theoretical results derived in section 5
from a simple linear treatment, it is interesting to compute

*In retrospect it turns out that it would have been better to use a somewhat larger
value of N, because the thermal relative vorticity and the temperature advection both
tend to have considerable amplitudes for large values of the wave number.
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the ratio between the energy conversion between the
kinetic energies of the shear flow and the mean flow and
the conversion between potential energy and the kinetic
energy ol the shear flow. This ratio is reproduced in table
2. The latter energy conversion has been taken from
Wiin-Nielsen [10].

The figures in table 2 show unaturally a more irregular
variation than the curves in figure 1, but there is a quali-
tative agreement to the extent that the ratio between the
two energy conversions tends to increase for large values
ol the wave number in the theoretical curves as well asin
the figures obtained {rom observations.

Figure 5 shows the distribution of {K’- K}, as a function
of wave number in the average for January 1959. We
notice first of all that the magnitude of {K’-K}p is small
compared to {K’-K}xp for all wave numbers. This result
agrees with the result obtained in section 6, where we
considered the total conversion over all wave numbers.
We find further agreement to the extent that {K’-K},is
negative for most wave numbers. The only exception is
the small positive conversions for wave numbers 5 and 6
given in figure 5.

Table 3 gives the mean values and standard deviations
(S) corresponding to figure 5. We find as before that the
standard deviations show a large scatter of the individual
daily values around the monthly mean value.

Table 4 contains the values of the ratio|{K’ K},
{K"K}yp| as a function of wave number. The numbers
in this table are obtained fron the average values given in
tables 1 and 3. Table 4 shows the ratio is quite small for
n >4, If these results are significant, we arrive at the con-
clusion that the major part of the energy conversion be-
tween the kinetic energies of the shear flow and the verti-
cally averaged flow is contained in {K"-K}y,. Some res-
ervation must be taken to this conclusion due to the fact
that we have used divergences computed {rom a quasi-
non-divergent model to evaluate { K"K}, If the vertical
velocities and therefore also the divergence implied by
such a model are systematically too small, it is evident
that the conclusion above could be radically changed.
Some insight into this question can be gained by evaluating
the two conversions {K’-K}xp and {K’K}p using data

TABLE 1.—Mean values and standard deviations (S) of the energy conversion {K’-K}xp s a function of wave number 1, corresponding to figure 4

n 0 1 2 l PR } 3 6 7 8 9 10
\
(R B wp X 1078 . 7.8 91.6 67.4 \ 107.1 l 1927 ] 1382 167.6 190.1 1711 105.4 48.4
S X L07B ‘ 70.9 105. 4 916 ’ o6 eLel 1573 e 179.7 1745 84.7 81.2
| i

TABLE 2.—Ralio of the

energy conversion {K’-Klnp to the energy conversion {P-K’} as a function of wave number n

l 8 9 10

{ B By sl {PE"} e ’ 0.38‘ 0.93

0.25 0.78

0.40 )
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from extended numerical integrations of models based
upon the primitive equations.

For the planetary waves (1<n<3) we find somewhat
larger values of the ratio given in table 4. This would
indicate that {K’. K}, is more important for these waves
thau it 1s for the smaller scales in deseribing the conver-
sion of kinetic energy between the shear flow and the mean
flow. We are again forced to express some reservations
to this conclusion. It has earlier been pointed out (Wiin-
Nielsen [10]) that the vertical velocities implied by a
quasi-non-divergent two-parameter model could be radi-
cally changed by heat sources and sinks. Since the evalu-
ation of {K’-K}p, in this paper makes use of vertical
velocities computed from an adiabatic, frictionless model,
it is evident that the discussion given ir the earlier paper
[10] also applies here.

With the reservations mentioned above we conclude
therefore that the major part of the energy conversion
{K"K} is contained in {K’-K}yp.

8. ESTIMATES OF DECAY TIMES

In connection with the computations we have made it is
also of interest to compute some measure of the total
amounts of kinetic energy in the vertically averaged flow
and in the shear flow. A crude estimate can be made of
the ratio of these quantities from the model assumptions
in a two-parameter model. Suppose that the wind varia-
tions with pressure were given by (5.1) with the function
A(p) satislying (5.2). We would then have

w1 f f VZdS(]p—Z— SV (8.1)
where the tilde (~) means an area average.
The kinetic energy in the shear flow would be:
f f V’Z(lSdp——— f f 5 A(p)*VidSdp
_Po o2
=3 SVi (8.2)

A crude first estimate of K/K’ can be obtained from
empirical data (Wiin-Neilsen [12]), which show that
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FrcuvreE 5—The energy conversion {K’ -K}D as a function of wave
number averaged in time, for January 1959.

[ —
9 10

[VI~1.8Vz|, which means that the mean flow kinetic
energy 1s about three times larger than the shear flow
kinetic energy. While the kinetic energy of the vertically
averaged flow thus is a few times larger than the kinetic
energy in the shear flow it receives only a small fraction
of the total amount by conversion from shear flow energy
and loses naturally in the average the same amount by
frictional dissipation. The amount of shear flow kinetic
energy, on the other hand, is a few times smaller, but a
larger fraction is received by conversion {rom available
potential energy and the same amount is naturally on
the average lost by conversion to mean flow kinetic
energy and by {rictional dissipation.

We may estimate the total decay time* in the two
energy reservoirs of mean flow and shear flow kinetic
energy. In order to do this we need an estimate of the

*The total decay time is the time it would take to empty an energy reservoir comp-
lotely, if the energy supplies were cut off,

TABLE 3.—Mean values and standard deviation (S) of the energy conversion {K’K} p as a funclion of wave number n, corresponding to figure &

7 ‘ 3 4 ! 5 6 7 8 9 10
|
R pX1075. . | —45.5 i —6.0| —4L1| —180| —59 14.8 141 —94| -16| —03| -IL8
SXI0-S e . 32.1 } 30.1 } 35.8 43.5 29.0 \ 39.4 37.0 37.8 36| 226 25.1
TaBLE 4.— Ralio of the energy conversion { K'-K} B to the energy conversion {K""K} & as a function of wave number n
n ‘ 0 1 1 ‘ 2 ' 3 ’ 4 ‘ 5 6 ‘ 7 8 9 ’ 10
e R 'S | 0.58 0.07 0.61 0.17 I‘ 0.05 0.11 0.08 ’ 0.05 0.01 0.00 0.24
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amount of energy in the two reservoirs. As a first ap-
proximation we have taken the total amount of kinetic
energy in the atmosphere in the wintertime as estimated
by Pisharoty [8] and reproduced by Bjerknes [1]. In the
layer between sea level and 10 cb. it amounts to 38.4 X100
kj. for the latitude band 17° to 77° N. or 22.6 > 10*kj. m.™2.
This amount was divided between the mean flow and
shear flow kinetic energies in the ratio 3:1, which gives
K=16.95%X102kj. m.7? and K’'=5.65X10kj. m.72. The
total energy influx into the reservoir of mean flow kinetic
energy is as estimated in this paper 3.8 X107*kj. m.7?sec.™,
which gives a total decay time of 52 days. If we only
consider the contribution from the quasi-non-divergent
part we get an influx of 4.3X107*k). m.7? sec.™, which
gives the total decay time of 46 days.

The total energy influx into the reservoir of shear flow
kinetic energy from conversion from available potential
energy is 14.0X107*kj. m.™? sec.”* (Wiin-Nielsen [10])
but of this amount 3.8<107*kj. m.”? sec.”?, goes into the
mean flow kinetic energy, which leaves 10.2107*kj. m.™?
sec.”! in the shear flow kinetic energy. With K'=5.65X
10°kj. m.”2 we get a total decay time of 6.4 days, which
then also is an estimate of the {rictional dissipation
measured by the last term in (3.11).

9. SUMMARY AND CONCLUSIONS

The total kinetic energy of the horizontal, hydrostatic
flow in the atmosphere may be divided into the kinetic
energy of the vertically integrated flow and the kinetic
energy of the deviation from this flow, the so-called
shear flow. It is shown that the kinetic energy gained
by conversion from potential energy goes into the kinetic
energy of the shear flow. The energy transformation
between shear flow and mean flow is found in general
and also in the special case of the quasi-non-divergent
model. The general formula for energy transformation
between shear flow and mean flow may be shown to
consist of two terms of which one is formally represented
in the quasi-non-divergent model, while the other will
be present in more advanced models based upon the
vorticity equation or the primitive equations.

The energy conversion between shear flow and mean
flow and between available potential energy and shear
flow kinetic energy is evaluated in the quasi-non-diver-
gent case using a two-parameter representation of the
atmosphere. It is especially shown that the ratio be-
tween the two energy conversions tends to become
large {or small-scale motion, but less than unity for
planetary flow. On the intermediate Rossby scale we
find a ratio close to unity which means that no storage
takes place in the shear flow kinetic energy on this
scale. These results are obtained using linear equations
with finite amplitude disturbances superimposed on a
zonal current which varies only with pressure.

Observed data have been used to evaluate the energy
conversion between shear flow and mean flow in a quasi-
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non-divergent two-parameter model. Data from such a
model have also been used to estimate the conversion
due to the divergent part of the flow. It is fouund that
the latter is only about 10 percent of the former indicating
that the largest part of the energy conversion in question
is present in a quasi-non-divergent model, and that only
a small part will be added in more advanced models,
especially models based upon the primitive equations.

It is further found that only about 27 percent (in
quasi-non-divergent models 30 percent) of the energy
converted from available potential energy goes into the
kinetic energy of the vertically averaged flow.

The energy conversion {K’-K} has also been evaluated
as a [unction of wave number. It 1s found that
{K’K}xp is positive on the average and has a maximum
around wave number 7. The conversion {K' 'K}, is
numerically much smaller and tends to be negative for
most wave numbers.-

Wiin-Nielsen and Brown [11] have recently estimated
the generation of available potential energy {from exactly
the same data as have been used in this study. It turns
out that the generation of zonal available potential
energy amounts to 50> 107* kj.m.”? sec.”! on the average
for January 1959. Since the conversion {rom available
potential energy to shear flow kinetic energy is estimated
to be 14.4 kj.m.7 sec.”™!, we find that 35.6 kj.m.™? sec.”!
is being dissipated from the reservoir of potential energy,
or in other words 71 percent of the generation of zonal
available potential energy. Most of the dissipation is
due to a degradation of eddy available potential energy
by diabatic processes. The conversion from shear flow
kinetic energy (3.8 kj.m.”? sec.™) found in this paper
means that 10.6 kj.m.72 sec.”! or 21 percent of the genera-
tion of zonal available potential energy is dissipated
from the reservoir of shear flow kinetic energy. As a
residual we find that 8 percent is dissipated from the
reservoir of mean flow kinetic energy.

The most surprising result is probably the small
fraction dissipated from the mean flow kinetic energy.
If our estimate of {K’.-K} as suggested earlier is too
small we would find a greater fraction being dissipated
from the mean flow kinetic energy. On the other hand,
if the result is correct it shows that the total decay time
of the mean flow kinetic energy is very large.
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